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Abstract 
 
This report summarizes results of the software development during the period from August 1, 
2005 to August 1, 2006. The code benchmarking and support will continue during  
1-year service term until August 2007. 
 
General attention at this stage of the work was devoted to development of the electron cooling 
models in order to provide realistic comparison between non-magnetized cooling force calculation 
and experiments at Fermilab Recycler ring. Algorithm for stochastic cooling and optical stochastic 
cooing simulation was introduced. New algorithms for calculation of the electron cooling friction 
force with real distribution of electron bunch were implemented. 
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SUMMARY OF CODE DEVELOPMENT 
 
Initial design of RHIC electron cooling system presumed generation of the magnetized electron 
beam with the cooling section solenoid providing the longitudinal magnetic field of 2 – 5 T. A 
large emittance of the electron beam used in this approach prevents ion-electron recombination in 
the cooling section while an electron magnetization provides the cooling force needed. 
 
A few models for magnetized cooling simulation were developed under the previous contracts 
between BNL and JINR. The results of the magnetized friction force calculation were compared 
with simulation of ion dynamics in an electron cloud using VORPAL code and with dedicated 
experiments at CELSIUS cooling system. As a result, the accuracy of the magnetized cooling rate 
calculation was substantially increased. Simulations showed that for sufficient increase of the 
luminosity in RHIC based on the magnetized approach a required charge of the electron bunch 
should be about 20 nC. 
 
Electron cooling in RHIC based on the non-magnetized electron beam sufficiently simplifies the 
cooler design. Generation and acceleration of the electron bunch without longitudinal magnetic 
field permits to reach low value of emittance in the cooling section. Suppression of the ion 
recombination with electrons in the cooling section can be performed using undulator with 
relatively weak magnetic field ~10÷50 G. The cooling rate required for the suppression of 
intrabeam scattering can be obtained with relatively small charge of the electron bunch ~2÷5 nC.  
 
Obvious advantages of the non-magnetized version of the cooler design stimulated development 
and benchmarking of the algorithms for the cooling force calculation in the absence of the 
magnetic field. In previous version of BETACOOL program the following algorithms were used 
for the non-magnetized friction force: 
- numerical evaluation of 3D integral over the electron distribution function in the case of 
flattened velocity distribution, 
- Chandrasekhar’s formula for the friction force with uniform Maxwellian velocity distribution, 
- asymptotic formulae for the friction force with flattened velocity distribution derived by 
Meshkov. 
 
To provide accurate benchmarking of existing algorithms and to improve accuracy and speed of 
the calculation two new algorithms were introduced into the code: Binney’s formula and 
asymptotic representation by Derbenev for flattened velocity distribution. 
 
The electron cooling of 8 GeV antiprotons at Recycler cooling system (Fermilab) commissioned 
in 2005, can be referred to as the “non-magnetized”. To provide comparison between the friction 
force simulated with BETACOOL and the cooling rate measured at Recycler, the algorithm for 
direct simulation of the evolution of the ion beam parameters during a voltage step procedure was 
introduced into the code.  
 
Binary collision model for the friction force derived by Erlangen Univ. (Germany) was 
implemented in the program. The results of the friction force calculation with this program were 
used for benchmarking of new model of the cooling force in BETACOOL code. 
 
Numerical algorithm of the cooling force calculation from the real distribution of the electron 
bunch was developed. The design of new electron gun for the RHIC cooler is realized with 
PARMELA code. Calculated with PARMELA coordinates and velocities of accelerated electron 
bunch can be loaded into BETACOOL code and the cooling process with real electron distribution 
can be produced. 
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The designed electron bunch has smaller length than the one of ion beam. For the effective 
cooling process the special painting procedure of the electron bunch position over the ion beam 
position is necessary. For the optimization of this process the painting procedure was realized in 
BETACOOL code. 
 
To provide more accurate simulations of Intrabeam scattering process the algorithm structure was 
modified. In the tracking procedure the longitudinal motion representation was corrected and 
tested. The modules for particle coordinate transformation from laboratory frame to beam frame 
and back were introduced. To avoid significant increase in simulation time the possibility to 
change an integration step over time for each process independently was introduced.  
 
Algorithm for the optical stochastic cooling simulation developed by BNL was implemented into 
the code. For simulation of usual stochastic cooling the model developed by FZJ (Juelich, 
Germany) can be used in present the simulations. Description of this algorithm is also included in 
this report. 
 
In the last chapter we describe the realized and benchmarked simplified kinetic model of the IBS 
process, the algorithm realized for calculation of the friction and diffusion acting on the ion in the 
electron beam presented as an array of particles, the structure of developed algorithms for 
Langevin force calculation with general form of the diffusion tensor and for kinetic IBS 
simulation using local array of the ions.  
 

 4



1. FRICTION FORCE IN NONMAGNETIZED ELECTRON BEAM 
 
1.1. Numerical calculation of the force components 
 
In the particle rest frame the friction force acting on the ion at charge number Z inside a 
nonmagnetized electron beam at density of ne can be evaluated by numerical integration of the 
following formula  
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where e and m are the electron charge and mass, V and ve are the ion and electron velocities 
respectively.   
 

The Coulomb logarithm 
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 is kept under the integral because the minimal impact parameter 

depends on electron velocity: 
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At given value of the ion velocity the maximum impact parameter is constant and it is determined 
by dynamic shielding radius or the ion time of flight through the electron cloud. Radius of the 
dynamic shielding sphere coincides with Debay radius: 
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when the ion velocity is less than the electron velocity spread ∆e. The plasma frequency ωp is 
equal to 
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When the ion velocity sufficiently larger than the electron velocity spread it determines the 
shielding radius  
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The both formulae (1.3) and (1.5) can be combined together to have a smooth dependence of the 
shielding radius on the ion velocity: 
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In the case, when the shielding sphere does not contain big enough number of electrons to 
compensate the ion charge (such a situation takes a place in the case of magnetized electron beam 
at low longitudinal velocity spread) it has to be increased in accordance with the electron beam 
density and the ion charge. In the program this radius is estimated from the expression 
 
 . (1.7) Zne 3~3ρ
 
As a result, the maximum impact parameter is calculated as a minimum from three values: 
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The second term describes the distance, which the ion passes inside the electron beam. Here τ is 
the ion time of flight the cooling section in the PRF: 
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In the case of axial symmetry the electron distribution function can be written in the following 
form: 
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where ∆⊥ and ∆|| are the electron velocity spreads in the transverse and longitudinal direction 
correspondingly. The shielding cloud in this case has an ellipsoidal shape which can be 
approximated by the sphere of radius calculated using effective electron velocity spread: 
 
 . (1.11) 2
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The components of the friction force (1.1) can be calculated in cylindrical co-ordinate system as 
follows: 
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(1.12) 
 
 
Within an accuracy of about 2% the upper limit of the integrals over velocity components can be 
replaced from infinity to three corresponding rms values and integration over ϕ can be performed 
from 0 to π due to symmetry of the formulae. In this case the friction force components can be 
calculated as: 
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where the normalization factor is calculated in accordance with: 
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The minimal impact parameter is the following function of the electron velocity components: 
 

 ( ) ( ) ϕϕ
ρ

2222
||||

2

min sincos
1

⊥⊥⊥ +−+−
=

vvVvVm
Ze

e

. (1.15) 

 
At the ion velocity  the minimal impact parameter becomes to be constant: ⊥∆∆>> ,||V
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and Coulomb logarithm can be removed from the integral. At extremely small ion velocity the 
calculation of the minimal impact parameter in accordance with the formula (1.16) leads to zero 
friction force value, when becomes to be maxmin ρρ > . One can avoid this problem introducing 
mean minimal impact parameter in accordance with 
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When the Coulomb logarithm LC is constant the two of three integrals in (1.12) can be calculated 
analytically and the friction force components can be written in accordance with Binney’s 
formulae: 
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where B⊥ and B|| are the following integrals: 
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In the case of uniform Maxwellian distribution (when e∆=∆=∆ ⊥|| ) the integrals (1.20) coincide 
with each other and reproduce Chandrasekhar’s  formula. In Budker’s notation it has the following 
form: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−=
e

Ce V
m

LZen
V
VF ϕ

π 24

3

4
r

r
, where 

 2/

0

2/ 22 22)( x
x

y exdyex −−∫ −=
ππ

ϕ . (1.21) 

 
The formulae (1.12) have to give the same result when the logarithm is removed from the 
integrals. 
 
1.2. Asymptotic representation 
 
For fast simulation of the cooling process in the BETACOOL were used asymptotic formulae 
derived by I. Meshkov. In the case, when transverse velocity spread of electrons is substantially 
larger than longitudinal one the friction force components are approximated in three ranges of the 
ion velocity. 
 
I. High velocity V ≥ ∆⊥, here longitudinal and transverse components of the friction force are 
equal: 
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and in this range the friction force shape coincides with formula (1.21). 
 
II. Low velocity ∆|| ≤ V < ∆⊥. Here the transverse component of the friction force is given by the 
following expression: 
 

 3

424

⊥

⊥
⊥ ∆

⋅−=
V

m
LneZ

F Ceπ
, (1.23) 

and longitudinal one: 
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III. Superlow velocity V < ∆||. Here the transverse component of the friction force is equal to zero, 
the longitudinal component is given by: 
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The minimal impact parameter in the Coulomb logarithm is equal to: 
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For the longitudinal component of the friction force at zero transverse velocity the asymptotic 
formulae was derived by Ya. Derbenev in the following form: 
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Here the Coulomb logarithms are calculated in accordance with the following formulae: 
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In order to provide uniform usage of the formulae in the program the friction force calculation was 
realized in three ranges of the ion velocity similarly to Meshko’s asymptotes. 
 
I. High velocity V ≥ ∆⊥, here longitudinal and transverse components of the friction force are 
equal: 
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II. Low velocity ∆|| ≤ V < ∆⊥. Here the transverse component of the friction force is given by the 
following expression: 
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and longitudinal one: 
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III. Superlow velocity V < ∆||. Here the transverse component of the friction force is equal to zero, 
the longitudinal component is given by: 
 

 
22

||
2

||

||
42

||
4

⊥∆∆+
−=

V

V
L

m
neZ

F C
eπ

. (1.35) 

 
These formulae in the case V⊥ = 0 give the correct result for longitudinal component of the friction 
force (1.27), (1.28) and have a correct asymptotes at high ion velocity. The transverse component 
of the force is calculated in accordance with Meshkov’s representation. 
 
1.3. Benchmarking the code 
 
All the formulae for the numerical friction force calculation (1.12, 1.19 and 1.21) have to coincide 
in the case of uniform Maxwellian distribution of the electrons if the Coulomb logarithm is moved 
under the integral. In this case the friction is symmetrical in the transverse and longitudinal 
degrees of freedom. The formulae were tested at Recycler cooling system parameters that are 
listed in the Table 1.1.  
 

Table 1. The cooling system parameters used in simulations. 
Cooling section length, m 20 
Electron energy, MeV 4.36 
Beta functions in the cooling section, m 20 
Electron current, A 0.2 
Electron beam radius, cm 0.45 
Transverse temperature, eV 0.5 
Longitudinal temperature, eV 0.01 
 
In the Fig. 1.1. the results of the calculations at T|| = T⊥ = 0.5 eV using different formulae are 
presented. 
 

  
Fig. 1.1, a. Friction force components (left plot - transverse, right plot – longitudinal) as functions 
of the ion velocity calculated with Chandrasekhar’s  formula. 

 10



   
Fig. 1.1, b. Friction force components (left plot - transverse, right plot – longitudinal) as functions 
of the ion velocity calculated with Biney’s  formula. Integration step is 0.003, upper limit is 3. 

  
Fig. 1.1, c. Friction force components (left plot - transverse, right plot – longitudinal) as functions 
of the ion velocity calculated by numerical evaluation of 3D integral (1.13). The Coulomb 
logarithm is removed from the integral. Number of integration steps over the transverse velocity is 
27, over the longitudinal velocity - 26, over the angle - 15. 
 
The maximum position and amplitude of the friction force calculated using different formulae 
coincide within the accuracy of numerical integration. The numerical evaluation of 3D integral 
requires by about 100 times longer calculation time and the accuracy decreases in the region of 
small velocity (one can see a numerical noise in the Fig. 1.1, b due to small number of the 
integration steps). The numerical noise in the region of small ion velocity at evaluation of 3D 
integral is sufficiently less, when the Coulomb logarithm is kept under the integral. 
 
At flattened electron velocity distribution the Binney’s formula has to coincide with the numerical 
evaluation of 3D integral (1.13) when the Coulomb logarithm is removed over the integral. In the 
Fig 1.2 the results of the force calculation at T|| = 0.01 eV are presented. At the flattened velocity 
distribution the amplitude of the longitudinal component of the friction force is larger than the 
transverse one, and the maximum position is located near the electron longitudinal velocity 
spread. Both the formulae give the same result with the accuracy of numerical integration.  
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Fig. 1.2, a. Friction force components (left plot - transverse, right plot – longitudinal) as functions 
of the ion velocity calculated with Biney’s  formula. Integration step is 0.003, upper limit is 3. 

  
Fig. 1.2, b. Friction force components (left plot - transverse, right plot – longitudinal) as functions 
of the ion velocity calculated by numerical evaluation of 3D integral (1.13). The Coulomb 
logarithm is removed from the integral. Number of integration steps over the transverse velocity is 
27, over the longitudinal velocity - 26, over the angle - 15. 
 
The difference in the friction forces calculated as a 3D integral wit Coulomb logarithm inside or 
outside the integral is illustrated in the Fig. 1.3. 

   
Fig. 1.3. The longitudinal component of the friction force as function of longitudinal ion velocity. 
Coulomb logarithm is removed from the integral - left plot, coulomb logarithm is under the 
integral – right plot. 
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One can see that the accurate treatment of the Coulomb logarithm leads to slight decrease of the 
friction force value and displacement of the maximum position into the region of larger ion 
velocity. It means that at used parameters of the cooler the Binney’s formula provide good enough 
accuracy of the calculation at sufficiently less calculation time. At other cooler parameters the 
numerical evaluation of 3D integral can be used for estimation of the accuracy of other formulae 
and for simulations can be used more fast algorithm. 
 
For comparison between numerical and asymptotic representations of the friction force the 
longitudinal component of the force calculated in accordance with Meshkov’s formulae is shown 
in the Fig. 1.4. One can see that this asymptote sufficiently overestimate the friction force and it 
can be used only for very rough estimates.   
 

 
Fig. 1.4. Meshkov’s asymptote of the friction force longitudinal component. 

 
More appropriate candidate for comparison of the numerical results of the friction force 
calculation with experiments is Recycler cooling system realizing the nonmagnetized cooling of 
antiprotons. To simplify the comparison a few modifications in the program were done. 
 
1.4. Modeling of Recycler cooling system 
 
At usual electron cooling systems a longitudinal magnetic field is used for transportation of the 
electron beam. At decrease of the magnetic field value in a cooling section the beam quality fast 
decreases and investigation of nonmagnetized regime of the electron cooling can not be provided 
in well controlled conditions. In July 2005 the Recycler cooling system was put into operation in 
Fermilab. At this cooling system the longitudinal magnetic field in the cooling section is used only 
to preserve angular spread of electrons θ at the level below 200 µrad. The required longitudinal 
magnetic field value B is 105 G that corresponds to electron rotation with Larmor radius 
 

m
eB
pc 4103 −

⊥ ⋅≈= θρ , 

 
where pc = 4,85 MeV is the electron momentum. The cooling section length is 20 m which 
approximately corresponds to 2 steps of the Larmor helix. Maximum impact parameter at 
maximum electron current of 500 mA is restricted by time of flight the cooling section and it is 
equal  
 

m5
max 107 −⋅≈ρ , 
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that is smaller than the electron Larmor radius. At such parameters one can expect, that the impact 
of magnetized collisions into the friction force is negligible.  
 
To provide accurate comparison between results of experimental investigations at Recycler and 
numerical simulation with BETACOOL a few new algorithms were implemented and tested. 
General method for friction force measurements at Recycler is Voltage Step method and general 
attention was devoted to simulation of this procedure in BETACOOL. 
 
One of the peculiarities of the Recycler cooling system is sufficient dependence of the electron 
transverse velocity spread on the distance from the beam centre. This effect appears due to the 
beam envelope mismatch with the transportation channel. In the first approximation this effect can 
be presented as a linear increase of the velocity spread with radial co-ordinate: 
 

 r
dr

d ⊥
⊥

∆
=∆ ,  (1.36) 

 

where the velocity gradient 
dr

d ⊥∆  is input into the simulations as an additional parameter of the 

electron beam (last parameter in the Fig. 1.5).  
 

 
Fig. 1.5. Modification of the visual form for input a transverse velocity gradient. 

 
To simulate the High Voltage step in the electron cooler the electron momentum can be varied 
during simulations by change of the parameter “dP/P shift” (Fig. 1.5). RMS dynamics simulation 
presumes that the mean ion momentum is constant during evolution therefore the voltage step 
method can be simulated only in the frame of Model Beam algorithm. The mean momentum of 
the ions is output in additional curve “dpmo2t.cur” and can be visualized in the same plot with a 
momentum spread in the corresponding form of the Windows interface. 
 
An example of the cooling process simulation is presented in the Fig. 1.6. The red curve 
correspond to mean antiproton momentum. The first 1700 sec correspond to preliminary cooling 
of antiprotons. At 1700 sec the electron momentum was shifted by the relative value of 10-3 and 
during next 2000 sec the mean antiproton momentum is cooled to the new momentum of the 
electrons. The green curve presents the variation in time of the antiproton momentum spread. 
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Fig. 1.6. Simulation of the voltage step method using BETACOOL program. The electron beam 
parameters are presented in the Table 1.1. 
 
Evolution of the antiproton momentum during the friction force measurement is also output as a 
3D plot of the profile versus time as shown in the Fig 1.7.  
 

 
Fig. 1.7. The longitudinal profile evolution during friction force measurement. 
 
 To reproduce the procedure using in Fermilab for the beam longitudinal distribution measurement 
the possibility to average of a few consequent longitudinal profiles was introduced. An example of 
a few consequent averaged profiles calculated with BETACOOL after 2 keV step of the electron 
energy is presented in the Fig. 1.8. The electron beam current is 500 mA. 
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T_l = 2 meV, T_t = 0.9 eV, dV/dr = 9e8 sec^-1
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Fig. 1.8. Evolution of the longitudinal profile in time. Distance between slices is 50 sec. 
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2. MODELS OF ELECTRON COOLING FRICTION FORCE 
 
2.1. Formula by Erlangen Univ. 
 
In [C.Toepffer et al., Erlangen Univ.] the friction force was calculated in the frame of binary 
collision model under assumption that the ion velocity stays constant in a collision with an 
electron. The unperturbed motion of electron is a helix with the Larmor radius: 
 

 
eB

cmv⊥
⊥ =ρ  (2.1) 

 
and the pitch determined by longitudinal velocity. The ion velocity variation is calculated 
iteratively and at impact parameters larger than the Larmor radius one can obtain solution in a 
closed form for two limiting cases: 
 

( )
eB

vVVcm 2
||||

2 −+
= ⊥δ  >> ρ⊥

 
and δ << ρ⊥
 
where δ is the pitch of the helix as seen from the ion. 
 
Correspondingly, the friction force includes three components related to different types of 
collision: 

- fast collisions at impact parameters less than radius of electron rotation, 
- collisions with “tight” helices, 
- collisions with “stretched” helices. 

 
In the case of axial symmetry the electron distribution function can be written in the following 
form: 
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where ∆⊥ and ∆|| are the electron rms velocity spreads in the transverse and longitudinal direction 
correspondingly.  
 
For the fast collisions the formula is analogous to non-magnetized collisions. The components of 
the friction force at fast collisions can be calculated in cylindrical co-ordinate system as follows: 
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But here both impact parameters – minimum and maximum – are the functions of the electron 
velocity: 
 

 ( ) ( ) ϕϕ
ρ

2222
||||

2

min sincos
1

⊥⊥⊥ +−+−
=

vvVvVm
Ze

e

. (2.4) 

 

eB
cmv⊥

⊥ == ρρmax . 

 
The friction force in collisions with tight helices 
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where 
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For stretched helices 
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When V >> ∆|| the electron distribution can be approximated by delta-function ( ) ( )|||| vvf δ= . In 
this case integration over electron velocity components can be provided independently. The 
friction force components for tight helices can be expressed in the following form: 
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Here the Coulomb logarithm is determined by the expression 
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at 
eB

VVcm 2
||

2 +
= ⊥δ . Within an accuracy to the logarithm definition these formulae coincide with 

derived in the limit of infinite magnetic field in [doctoral thesis by V.Parkhomchuk].  
 
In the same approximation V >> ∆|| the formulae for collisions with stretched helices can be 
rewritten in the form: 
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where ωp, ωB are the plasma and cyclotron frequencies. This formula is valid at 1>>
∆⊥

V  and its 

structure is similar to semi-empirical formula by Parkhomchuk. 
 
Numerical integration of (5) has to be provided taking into account peculiarity of the integral at 

. 0→⊥V
 
2.2. 3D non-magnetized friction force 
 
In absence of longitudinal magnetic field in the cooling section the electron motion in transverse 
planes is uncoupled. Correspondingly the electron bunch can has different velocity spreads in 
horizontal and vertical planes. In this case the friction force can not be presented as a sum of radial 
and longitudinal components, but it is a vector with all three different components. The 
components of 3D friction force can be calculated as an integral over electron velocity at given 
distribution function. In the case of Gaussian electron bunch the distribution function in velocity 
can be approximated as 
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where ∆x,y,|| are the electron velocity spreads in horizontal, vertical and longitudinal planes. 
 
The friction force is calculated in accordance with the definition: 
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where minimum impact parameter is a function of the electron velocity vr : 
 

 2
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Ze

rr
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=ρ . (2.15) 

The maximum impact parameter is calculated as usual: 
 
 { }τρρ Vsh ,minmax = , (2.16) 
 

where the shielding radius is equal to 
p

e
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p
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V
ω

ρ = , when eV ∆> . Here 

∆e is the total electron velocity spread: 
 
 2

||
22 ∆+∆+∆=∆ yxe , (2.17) 

 
and the plasma frequency is: 
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ω = . (2.18) 

 
In the case, when undulator is enable the minimum impact parameter is calculated as: 
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where B is the undulator field, λ - its wavelength. 
 

 
Fig. 2.1. Visual form for input parameters of Toepffer and 3D friction force calculation. 
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The 3D model of the friction force can be used correctly only in the case, when electron beam is 
presented as an array of particles. Number of integration steps over each velocity component can 
be input in corresponding edit windows Fig. 2.1. All the procedures for the friction force 
visualization can be used for 3D force also, but they output instead of transverse component of 
axial symmetry force the horizontal component of 3D force. The friction force is calculated in the 
center of the electron bunch. 
 
2.3. Electron beam as an array of particles 
 
To explain the structure of PARMELA output file, two first string from it are presented below: 
 
20000, 3282.876465, 2.787979e+04, 5.425276e+01 
-5.100488e-06  1.419776e-08  4.333701e-05  7.665530e-08  0.000000e+00  5.425276e+01  1.000000e+00 

 
The first number in the first string is the particle number in the file. Last number in the first string 
is the mean electron kinetic energy E  in MeV. All other strings contain parameters of individual 

electrons. The first four numbers are . The fifth number is the phase // ,,, iiii yyxx iϕ  in degrees 
relatively to RF voltage. The sixth number is the electron kinetic energy Ei in MeV. And the last 
number is the electron number in the array i. 
 
In the original PARMELA file the numbers in the first string are divided by one space bar symbol. 
To read the file by BETACOOL program one needs (using any text editor) to introduce symbol a 
few space bar or “,” between the numbers in the firs string. 
 
BETACOOL reads the data from the file, when the radio button “From file – Gaussian” is in the 
position “from file”. The input file name should be introduced in the edit window of TBrowse 
component at the visual form (Fig. 2.2). 
 
After reading the file BETACOOL program calculates mean value for each co-ordinate and 
redefines all the electron co-ordinates in accordance: 
 
 xxx ii −= . (2.20) 
 
Then the longitudinal electron coordinate is calculated as: 
 

 ( )
3600

i
iss

ϕ
λ=− , (2.21) 

 
where λ = 42.63 cm is RF wave length. 
 
The longitudinal momentum components of the electrons are calculated as 
 

 
( )
( )2

2

2mcEE
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p
p
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i +

+
=

∆ , (2.22) 

 
where mc2 = 0.5110034 MeV is the electron rest energy. 
 
The bunch charge is not presented in the file and has to be input independently in the edit window 
“Number of electrons”. As in other models of the electron bunch the electron array can be shifted 
relatively to the center of the ion bunch. The offset of the transverse and longitudinal bunch 
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position and angular deviation of the electron bunch orbit in respect with the ion orbit are input in 
the visual form “ECOOL| Cooler” in the tab sheet “Ebeam shifts”. 
 

 
Fig. 2.2. Visual form for input and output of the electron array parameters. 

 
Thereafter the program calculates rms values of electron co-ordinates and momentum components 
and output them in corresponding edit windows of the visual form. The number of particles in 
array is an output parameter also. 
 
The electron beam temperatures and emittance are calculated from the array as follows: 
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 , (2.23) 222

|| pmcT σβ=
 

2mc
T yxσσ

ε ⊥
⊥ = . 

 
The velocity spread in the electron beam is calculated as in other electron beam models: 
 

 
m

T ||,
||,

⊥
⊥ =∆ . (2.24) 

 
All the mean bunch parameters are output in the same form, which is using for input the electron 
beam parameters for the other electron beam models (Fig. 2.3). 
 
The mean electron bunch parameters are output only for comparison with other models of the 
electron beam, for the friction force calculation the program uses local parameters of the bunch 
calculated as functions of the ion co-ordinates. 
 
The essence of the local parameter calculation is illustrated by the Fig. 2.4. In the electron array 
the program find Nloc electrons having minimum distance to the ion position. The value of Nloc is 
input in the edit window “Number of nearest particles” (Fig. 2.2). For obtained array of Nloc 
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electrons the program calculates mean and root men square parameters for all the co-ordinates and 
velocity components. 

 
Fig. 2.3. Emittance, temperature and velocity spread of the electron array 

 
 

Electron bunch Nb

Ion position Local area including given number of electrons Nloc  
Fig.2.4. Calculation of the local electron parameters. 

 
The algorithm of the friction force calculation is based on assumption that the local electrons are 
distributed in the geometry space almost uniformly. The local density is calculated via local rms 
values of the co-ordinates as: 
 

 
array

loc

syx

e
e N

NN
n

σσσππ 2222
= , (2.25) 

 
where Ne is the total electron number in the bunch, Narray is the particle number in the file. The 
term 22  in the denominator is introduced to recalculate the density for uniform distribution 
because at uniform distribution the beam radius is larger than its rms dimension by factor 2 . 
 
The density (2.25) and the velocity spreads (2.24) evaluated for the local array can be used for the 
friction force calculation in accordance with the analytical formulae (1.19) or asymptotic 
representation of the friction force at flattened velocity distribution. Usage of these formulae 
sufficiently speeds up the simulations but does not take into account asymmetry of the distribution 
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function in the transverse plane. If the asymmetry is sufficient one can use formulae (2.14) for 3D 
friction force. For this goal the corresponding electron rms velocity spreads are calculated as: 
 
 yxyx c ′′=∆ ,, βγσ , (2.26) 
 
where yx ′′,σ  are the rms angular spreads of the local electrons. 
  
Another possibility is to calculate the friction force using velocity components of the local 
electrons directly. For this aim the velocities of the local electrons are recalculated into the Particle 
Rest Frame. The distribution function of the local electrons in the velocity space is given as a 
series of δ - functions: 
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1 rrδ ). (2.27) 

 
In the friction force formula (1.1) the integral over the distribution function is transformed into 
series also. In this case the friction force components are calculated as follows: 
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where Vα  are the components of ion velocity in the particle rest frame, vj,α – the velocity 
components of j-th electron (α = x, y, z). The minimum impact parameter in the Coulomb 
logarithm LC,j is calculated via velocity of j-th electron: 
 

 2

2

min,
1

j

j
vVm

Ze
rr

−
=ρ . (2.29) 

 
There is a possibility to compare the cooling process dynamics at real and Gaussian distribution of 
the electrons. BETACOOL generates an array with Gaussian distribution in all degrees of 
freedom, when the radio button “From file – Gaussian” is in the position “Gaussian” at the visual 
form (Fig. 2.2). In this case the rms values of electron co-ordinates and momentum components 
from the corresponding edit windows of the visual form are used as input parameters, as well as 
the number of particles in array, which determines dimension of the created array. 
 
2.4. Analysis of the electron distribution in array  
 
To analyze the shape of the distribution function, when the electron bunch is presented as an array 
of particles, the drawing of the electron distribution can be done with BETACOOL code in the 
same windows where the ion distributions are plotted during calculation process. For this one 
needs to push the button Open on the tab sheet Draw array of ECOOL | Electron bunch 
window (Fig.2.5). On the tab sheets of Beam | Real Space visual form one can see the electron 
distribution in different projections of six-dimensional phase space. An example of the electron 
distribution in array calculated with PARMELA program is presented on the Fig.2.6. 
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Fig.2.5. Visual form for control of output of the electron distribution in an array 

 
On the Beam | Distribution window one can see the bunch profiles in coordinates and velocities. 
For bunch presented in the Fig. 2.6 the shape of profiles in transverse velocities is Gaussian 
practically. The profile shape in transverse co-ordinates lies between uniform and Gaussian 
(Fig.2.7). Peculiarities of the bunch acceleration lead to specific particle distribution in the 
longitudinal phase plane (right bottom plot in the Fig. 2.6.). It corresponds to well pronounced 
double peak structure of the beam profile in longitudinal velocity (right plot in the Fig. 2.7).  
 

    

    
Fig.2.6. Electron distribution in the different projection of phase space.  

Electron co-ordinates are calculated with PARMELA code. 
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a)   b)  
Fig.2.7. Coordinates (a) and velocities (b) distributions in the bunch shown in the Fig.2.6. 

Red and blue lines correspond to transverse degrees of freedom, green – longitudinal. 
 

For such shape of longitudinal profile one can expect strong dependence of the beam emittance on 
the longitudinal co-ordinate in the bunch. To analyze local bunch parameters the program can 
output coordinates and profiles of the electrons located inside a slice lying between longitudinal 
co-ordinates described in the edit windows in the visual form shown in the Fig. 2.5. For this goal 
on the tab sheet Draw array of ECOOL | Electron bunch window (Fig.2.5) the parameter Use 
longitudinal slices should be enabled and the initial and final co-ordinates of the longitudinal 
slices should be defined. Fig. 2.8 demonstrates electron distribution in the phase space for the 
longitudinal slice s = 0÷0.02 m. 
 

    

    
Fig.2.8. Electron distribution in the phase space for longitudinal slice s = 0÷0.02 m. 
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The square of the beam cross-section (upper left plot in the Fig. 2.8) and alpha – parameter of the 
phase ellipse (upper right plot in the Fig. 2.8) are slightly vary from slice to slice, but the 
transverse profiles look like Gaussian in each longitudinal slice (Fig.2.9). The longitudinal 
distribution varies significantly and it is fare from Gaussian in all slices.  

 

a)    b)  
Fig.2.9. Coordinates (a) and velocities (b) distributions for longitudinal slice s = 0÷2 cm. 
Red and blue curves correspond to transverse degrees of freedom, green – longitudinal. 

 
Gaussian distribution    real electron bunch from file 

    

 
Fig.2.10. Longitudinal ion beam profile after 4000 sec of cooling process and  
luminosity evolution during cooling process (without intrabeam scattering) 

for Gaussian and real distributions of electron bunch. 
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The cooling process in the case of Gaussian distributions of electrons leads to formation of 
compact dense core in the ion bunch (upper left plot in the Fig.2.10). In the case of electron 
distribution show in the Fig. 2.6 the ion density in the core has a smaller value; however the core 
is sufficiently wider than at Gaussian distribution (upper right plot in the Fig.2.10). As a result the 
luminosity is larger in the case of the real distribution of electrons. This phenomenon is very 
similar to formation of the beam transverse emittance using “hollow” electron beam. In the 
presented example the “hole” (low density in the central part) in the electron bunch is formed in 
the space of longitudinal velocities due to peculiarities of the electron acceleration. Analogous 
influence on the luminosity can be provided using the painting procedure described below.  
 
 
2.5. Electron beam shifts and painting procedure 
 
In BETACOOL code was realized different procedures for the changing of the electron beam 
position in transverse and longitudinal plans, the distance between electron and ion bunches, 
solenoid errors and so on. Parameters for these procedures were placed on different windows and 
sometime duplicate each other. Now all these possibilities are placed on the same tab sheet 
Ebeam Shifts on ECOOL | Cooler window (Fig.2.11). 
 

 
Fig.2.11. Control window for electron beam shifts and painting procedure. 

 
The definition for the electron beam shifts in the laboratory rest frame is written as following: 
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 (2.30) 

 
where ( ))/(,,,,, pdpsyyxx ∆∆′∆∆′∆∆  - vector of current shifts, 
( )iniiniiniiniiniini pdpsyyxx )/(,,,,, ∆∆′∆∆′∆∆  and ( )finfinfinfinfinfin pdpsyyxx )/(,,,,, ∆∆′∆∆′∆∆  - vectors 
of initial and final shifts, l – distance between points of shift, h – current position of ion. If 
Solenoid error option is not enabled then l = Lecool and h = Lecool / 2, Lecool – electron cooler 
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length. If Solenoid errors option is enabled then l is the length of magnetic field unhomogeneity 
which calculated from input data file *.err with field errors, h is equal to difference between ion 
longitudinal coordinate and position of the correspondence field unhomogeneity. This file has 3 
columns which correspond to the longitudinal coordinate, horizontal and vertical shifts along the 
longitudinal axis. Note that the Solenoid errors option will work properly if Euler or Runge-
Kutta cooler model is chosen on the tab sheet Cooler. 
 
If parameter Final is not enabled then final vector of shifts is equal to initial vector. The painting 
procedure is used when the parameter Painting period in enabled: 
 
 ( ))/(,,,,, pdpsyyxx ∆∆′∆∆′∆∆  = ( ))/(,,,,, pdpsyyxx ∆∆′∆∆′∆∆  × R, (2.31) 
 
where R is the remainder of integer division Nstep/Pstep, Nstep – step number of beam simulation, 
Pstep – parameter of Painting period. If Final parameters is enabled for painting procedure then 
longitudinal coordinate and momentum spread shifts are calculated as 
 

 
( ) ( ) ( ) ( )[ ]

( ) Rssss

Rpdppdppdppdp

inifinini
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 (2.32) 

 
Electron beam shifts can be read from the file for the painting procedure if parameters Painting is 
enabled. This file includes 6 columns which correspond to vector of current shifts. Number of 
rows equal to the period of the painting procedure and each row corresponds to the current step of 
the integration process. Scaling parameters Painting x __ can increase (positive value) or 
decrease (negative value) a speed of the painting procedure. For example, if scaling parameters 
equal 2 it means that only each second row is used in the painting procedure. If scaling parameter 
equal -2 it means that each row is used twice. User can change all parameters on the tab sheet 
Ebeam Shifts during simulation and even change data filenames with solenoid errors or painting 
procedure. 
 
Example of beam dynamics without and with painting procedure for standard parameters of RHIC 
is presented on Fig.2.12. The electron bunch has smaller length than ion, 1 cm and 18 cm of r.m.s 
size correspondingly. Without painting procedure the cooling process mainly exist for central 
particles only and particles in tails did not cool. That leads to the increasing of transverse 
emittances and the decreasing of the luminosity with time. 
 
The linear painting procedure over longitudinal position of electron bunch from 0 cm to 20 cm is 
presented on Fig.2.12. In this case the transverse emittances don’t change during cooling process 
and the luminosity does not decreasing with time. The dynamics of emittances has the same 
behavior for the painting procedure from 0 cm to 40 cm but the maximum value of the luminosity 
is smaller than for previous one (Fig.2.13). 
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   no painting    longitudinal painting 0 ÷ 20 cm 

 

 
Fig.2.12. Dependence of emittances and luminosity on time 

without and with longitudinal painting 0÷20 cm, 200 sec total period of painting. 
 

 
Fig.2.13. Dependence of luminosity on time with longitudinal painting 0÷40 cm. 
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3. STOCHASTIC COOLING SIMULATION 
 
Algorithm for stochastic cooling simulation was implemented into BETACOOL in accordance to 
the model derived by H.Stochorst (FZJ). The stochastic cooling for transverse degrees of freedom 
is simulated under assumption that the quarter wave loop pickup and kicker are located in the ring 
at positions with zero dispersion and its derivative. The phase advance of the betatron oscillations 

from pickup to kicker assumed to be ( )
2

12 π
+k , where k is integer, and the phase errors are 

minimized. For two transverse degrees of freedom there is no band overlap. Cooling of 
longitudinal degree of freedom is simulated in accordance with the theory of filter method. The 
simulation presumes that the longitudinal cooling is applied using analogous system components 
as in the case for transverse cooling. Pickup and kicker are then operated in Σ-mode and the signal 
pass contains a notch filter that provides the necessary information on the energy deviation of a 
particle for the coherent signal. Simultaneously the filter rejects the noise signals at frequency near 
the revolution harmonics.  
 
The model permits to estimate characteristic cooling times, consumption power and generate a 
kick of the particle momentum in the Model Beam algorithm using geometry parameters of pikup 
and kicker electrodes  
 
 
3.1. Cooling rate calculation 
 
The transverse emittance derivative over time in each plane can be written in the following form: 
 

 ( ∞−−= εε
τ

)ε

cooldt
d 1 , (3.1) 

 
where τcool describes the drift term in the Fokker-Plank equation and the equilibrium emittance ε∞ 
corresponds to the diffusion term [3, 4]. The characteristic time of the emittance variation due to 
action of the stochastic cooling is equal: 
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The transverse cooling time is determined from the parameters of the cooling system as follows: 
 

 ( )xxJ
Nf

W

cool

⋅=
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2

3
161 δη

τ
. (3.3) 

 

Here 22

11

trγγ
η −=  is off-momentum factor of the storage ring, γ is Lorenz factor of the ion, γtr is 

critical energy of the ring in the rest energy units. f0 is the ion revolution frequency. W = fmax – fmin 
is the bandwidth of the system with lower frequency fmin and upper frequency fmax.  N is the ion 
number. Total momentum spread of the beam δ is calculated from r.m.s. value in accordance with 
the shape of distribution function. For instance, at a parabolic distribution  
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= 4δ . (3.4) 
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Formfactor xJ(x) is calculated through a frequency range as follows: 
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The x value is proportional to the linear gain of the system from pickup to kicker GA : 
 
 RGx A /= ,  (3.6) 
 
where the coefficient R is determined by parameters of pickup and kicker: 
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Here hp,k is height of the gap at pickup and kicker, the pickup and kicker sensitivity are given by  
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where wp,k is the electrode width, Z – characteristic impedance, βp,k – beta functions in the pickup 
and kicker position, np,k is the number of lambda quarter loops in pickup and kicker, lloop is the 
loop length. βc, p and e – are the ion velocity, momentum and charge correspondingly, c is the 
speed of light. Value A1 is calculated through the bandwidth as follows 
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The equilibrium emittance value is determined by the cooling system parameters and the thermal 
noise power: 
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wher TA and TR are the pickup and preamplifier temperatures correspondingly. The values A2 and 
A3 are the following integrals: 
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For longitudinal degree of freedom the cooling time calculation is based on solution of Fokker-
Plank equation. The ion distribution in the energy space is described by the function ( )EΨ , where 
E is the energy deviation from mean kinetic energy E0. The Fokker-Plank equation for the 
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distribution function Ψ(E,t), which describes the particle density in the energy space, has the 
following form 
 

( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ Ψ

∂
∂

−Ψ
∂
∂

−=Ψ
∂
∂ tE

E
tEDtEEF

E
tE

t
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where E is energy deviation from the mean kinetic energy E0.  
 
Drift term in this equation describes the coherent cooling  
 

( )
0τ

=
EEF , 

 
where τ0 is the “single particle” cooling time. The diffusion term contains two parts 
 

( ) ( ) ( )tEDtEDtED Sth ,,, +=  
 
the beam heating due to thermal noise 
 

( ) 2, AEtEDth =  
 
and beam heating due to the finite Schottky noise density 
 

( ) ( )tEBEtEDS ,, 2Ψ= . 
 
To calculate dynamics of the rms beam parameters the Fokker-Plank equation can be reduced to 
equation for the second moment of the distribution function which is determined by 
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This equation has the following form [5, 4]: 
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Rms dynamics algorithm presumes Gaussian distribution in all degrees of freedom. In the energy 

space it corresponds to the density ( ) ( tE
N

tE ,1, Ψ=ρ )  given by 
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Thus the integral in the last term is equal to 
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and evolution of the second order momentum of the distribution function is described by the 
following equation 
 

 EE
cool

E NB
dt
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, (3.14) 

 
The values A, B, τcool and τ0 are determined from the cooling system parameters as follows: 
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the “single particle” cooling time τ0 is given by 
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formula (3.9) at the loop length of the longitudinal electrodes.  
 
Characteristic rate for the longitudinal emittance deviation (in Betacool for the longitudinal 
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Using relation between energy and momentum deviations 
p
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 the last equation can be 

reduced to: 
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3.2. Power consumption 
 
Optimization of the cooling system parameters presumes not only minimization of the equilibrium 
emittance and cooling time, but also keeping a consumption power in a reasonable range. The 
consumption power for transverse cooling chain is calculated as a sum of thermal noise power and 
Schottky power. The thermal noise power in the cooling bandwidth is given by: 
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and this value has to be corrected to take into account losses in combiner Pcomb: 
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The Schottky power in the cooling band is 
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The total power is calculated as the sum of (3.22) and (3.23) plus losses in an electronic chain. 
The losses in the electronic chain are input into program as additional parameter Ploss and total 
consumption power is calculated in accordance with: 
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The loss power includes losses in splitter, reserve noise signal and others losses and by the order 
of magnitude is about 10 dB. 
 
The filtered thermal noise power in the cooling bandwidth at the kicker input can be estimated 
from: 
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The filtered Schottky power at the kicker input is 
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The total power consumption is calculated by the same way as for transverse degrees of freedom. 
 
3.3. Kick of the ion momentum components due to action of stochastic cooling 
 
In the frame of Model Beam algorithm each particle is presented as a 6 co-ordinate vector: 
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r
, where x and y are the horizontal and vertical co-ordinates, px and py 

are corresponding momentum components, s-s0 is the distance from the bunch center (in the case 
of coasting beam this variable can have arbitrary value), ∆p is the particle momentum deviation 
from momentum of reference particle p.  
 
Some effects like electron cooling or internal target are located in some fixed points of the ring. 
Such effects are characterizing by the ring lattice functions in the effect position. Some effects like 
intrabeam scattering or scattering on residual gas are distributed over the total ring circumference. 
Average action of such effects can be applied to the beam in “averaged” position in the ring, that 
has the beta and dispersion functions equal to averaged over the ring ones, the alpha-functions and 
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dispersion derivative are equal to zero. Between the effect position the particle co-ordinates are 
transformed using linear matria at random phase advance (the random generation of the phase 
advance reflects that the integration step over time is sufficiently longer than revolution period and 
than betatron oscillation period). Action of each effect is simulated as the particle momentum 
variation in accordance with Langevin equation: 
 
 ( ) ( ) syxsyxsyxinsyxfinsyx TDTpppp ,,,,,,,,,, // ξ∆+∆Λ+= ,  (3.27) 

 
where ps is the particle longitudinal momentum deviation, subscript in correspond to initial 
momentum value, subscript fin relates to final particle momentum after action of the effect, Λ and 
D are the drift and diffusion terms for corresponding degree of freedom, ∆T is step of the 
integration over time, ξ is Gaussian random number at unit dispersion. The regular variation of the 
particle momentum due to action of drift term can be rewritten as 
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Here the value ( )
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as a “single-particle” cooling time. At large value of ∆T the absolute value of the term 
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this case direct application of the formula (3.28) will lead to change a sign of corresponding 
momentum component and can lead also to increase of its absolute value. This situation 
corresponds to artificial diffusion heating of the beam on numerical algorithm. To avoid this 
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which includes the (3.28) as a limit case at small ∆T.  
 
In the case of random variation of the particle momentum components corresponding to diffusion 
term in (3.27) the kick has to be calculated tacking into account the ring lattice parameters in the 
effect position. In the simplest case at the constant diffusion the equation for the emittance 
variation in time can be written as follows: 
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Tacking into account that rms momentum variation relates to the emittance variation as 

yx
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=θ , for the momentum components variation we have: 
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where βx,y are the beta functions in the effect position in corresponding planes. For longitudinal 
degree of freedom emittance is determined as square of the rms momentum spread and at this 
definition we have: 
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where k = 1 for coasting beam and k = 2 for bunched one. 
 
For the transverse degree of freedom the drift term in (3.27) is calculated in accordance with the 
formula (2.3) for the “single particle” cooling time. The regular variation of transverse momentum 
component are calculated in accordance with (3.28, 3.1.29): 
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Diffusion coefficient for the transverse degrees of freedom can be calculated using formula (3.10) 
for equilibrium emittance value. The emittance variation in time can be described by the following 
differential equation: 
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From the other hand (3.1) gives  
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and for the diffusion coefficient we have: 
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The diffusion power is proportional to square of the linear gain GA that can be seen from 
definitions of the cooling time and equilibrium emittance (3.3, 3.10). This result can be obtained 
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directly from expression for emittance derivative before introduction of ε∞ as it done for instance 
in [3]. 
 
In accordance with (3.32) for the momentum components variation we have: 
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In the present version of the program the kick is applied to the ion momentum in “averaged” 
position of the ring. 
 
For longitudinal degree of freedom the “single particle” cooling time τ0 is given by (3.18), and the 
regular particle momentum variation is calculated as follows: 
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At arbitrary distribution function the integral ∫ ρ dEE 22  can be estimated by the value 
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which is averaged for Gaussian and parabolic distributions. In this case the equation (3.14) can be 
rewritten as 
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The thermal and Shottky diffusion terms are independent, correspondingly the momentum kick 
due to diffusion is calculated as: 
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Visual forms for input and output parameters of the stochastic cooling system are presented at the 
Fig. 3.1 – 3.3. Structure of the input file corresponds to the structure of interface part. 
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Fig. 3.1. Visual form for input and output parameters for transverse cooling chain. 

 

 
Fig. 3.2. Visual form for input and output parameters for longitudinal cooling chain. 
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Fig. 3.3. Visual form for input parameters for power consumption calculation. 
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4. OPTICAL STOCHASTIC COOLING 
 

Optical stochastic cooling (OSC) is proposed for RHIC as stand-alone technique or to complement 
electron cooling [6], acting mainly on halo particles for which electron cooling approach is less 
efficient. OSC and its transit-time method were suggested to extend the stochastic cooling technique 
into the optical domain, with broad-band optical amplifier and undulator (wigglers) for coupling the 
optical radiation to charged-particle beam. Cooling results from a particle’s interaction in the kicker 
undulator with its own amplifier radiation, emitted in the pickup undulator. The path of the particles 
between the pickup and kicker (called a bypass) can be designed such that each particle receives a 
correction kick from its own amplifier radiation toward equilibrium orbit and energy. The 
interaction of a particle with amplified radiation from other particles results in heating. It was 
shown in [7] that the balance between cooling and heating define the optimal power of amplifier 
needed to achieved the ultimate cooling rate that is limited only by the bandwidth of the cooling 
loop, pickup-amplifier-kicker. However, in all possible applications of OSC to heavy particles, 
including 79Au ions in the RHIC, the power required in such system appears to be several orders of 
magnitude large then that feasible with modern optical amplifier. In this case, the amplifier’s power 
limits the cooling time. 

 
We define X=(x,x’,s,δ)T as the particle 4D coordinate vector, where x,x’ are transverse coordinates 
and angles, s is the longitudinal coordinate, δ is the particle’s relative energy offset. We identify 
the pickup undulator at a position A in the optics of the storage ring, and the kicker undulator at 
the position B. The beam transport from A to B can be written as XB=RXA. Consequently, XA=R-1XB 
and we define 
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The path-length difference on the trajectory from A to B written in terms of particle coordinates at 
a location B and taken relative to the equilibrium orbit is equal to  
 
 ( )δ+′+−=∆ 565251 RxRxRl  (4.2) 
 
This signal must be delayed to let the particle enter the kicker undulator ahead of the signal. 
Moreover, the path length for a signal including the delay in the amplifier must be chosen such 
that the equilibrium particle comes to the kicker undulator exactly at the crossover of the electric 
field with the electromagnetic wave of the signal. Then, the phase difference for a nonequilibrium 
particle is equal to 
 

 
λ
π

∆=ϕ
2

l , (4.3) 

where λ is wavelength of the undulator radiation. The particle energy right after the energy kick is 
 
 )sin(ϕ+δ=δ G , (4.4) 
 
where  is the gain amplifier, EbEEG /∆−= b is the beam energy. For simple calculation G is 
defined as 
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∆t is time step of calculation, G0 is input parameter in the unit δ/sec, z0 and σz are parameters of 
the ion bunch. 
 
The visual form for input the OSC parameters is presented in the Fig. 4.1.  
 

 
 

Fig.4.1. Input parameters for Optical Stochastic Cooling object. 
 

    
 

Fig. 4.2. Example of simulation using of Optical Stochastic Cooling: particle distribution in the 
longitudinal phase space (left) and longitudinal profile (right). 
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5. DEVELOPMENT OF KINETIC MODELS FOR IBS AND ECOOL 
 
Kinetic simulation of IBS process presumes a solution of Langevin equation for each model 
particle. The drift and diffusion terms of the equation has to be calculated for each particle 
independently as a function of its co-ordinates, velocity components and distribution function of 
all other particles in the Model Beam.  
 
Development of the algorithm for kinetic IBS simulation requires a solution of the following 
problems: 
- calculation of the friction force and diffusion tensor components for a tests particle in array of 
field particles; 
- reduction of the friction force and diffusion tensor components to the Langevin force 
components using to provide a kick of the particle momentum components; 
- development of the algorithm structure compatible with the structure of general BETACOOL 
objects. 
 
The first task is the common for simulation of IBS and electron cooling, when the electron bunch 
is presented as an array of particles. In order to simplify the code benchmarking the required 
procedures were developed and tested for the friction and diffusion calculation in the electron 
bunch. The algorithm for the friction force calculation, described in the chapter 2, was modified 
and extended for the diffusion tensor calculation. 
 
To benchmark the algorithm reducing friction and diffusion to Langevin force components the 
simplified kinetic model for IBS simulation proposed by P.Zenkevich was introduced into the 
code and tested. This model is based on analytical formulae for friction and diffusion components 
and presumes that only the friction depends on the particle velocity. The diffusion tensor in the 
frame of this model does not depend on the particle momentum and has a simplified structure. 
 
In the general case all the components of the diffusion tensor have nonzero values and calculation 
of the Langevin force components requires analysis of the tensor eigenvalues and eigenvectors. 
The algorithm realizing this procedure was proposed and is under development now.  
 
5.1. Kinetic model of IBS on the basis of Bjorken-Mtingwa theory 
 
In the frame of Bjorken-Mtingwa model of BETACOOL program the IBS growth rates are 
calculated in accordance with: 
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where , and iiiiBi DD βα+=φ // 2/2 2' iiiiiii DDDD γ+α+β=Η iii γβα ,,  - lattice functions in the 
horizontal (i=x) and vertical (i=y) plane, εx,y are the horizontal and vertical emittances, σp – rms 
momentum spread. Angular brackets mean averaging over the ring circumference.  
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At zero vertical dispersion these formulae coincide with original Bjorken-Mtingwa theory. The 
collision coefficients Iij are calculated in each position of the ring by numerical evaluation of the 
following integrals  
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where the matrix LI += λΛ , I – unit matrix, and matrix L is calculated via beam rms parameters 
and ring lattice functions in accordance with: 
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The IBS constant A is determined as in other IBS models: 
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ci NLcr
A

σσεεγπβ
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8
. (5.4) 

 
Here β and γ0 are the Lorenz parameters, ri is the ion classical radius, N is the ion number, Lc is the 
Coulomb logarithm, which is introduced as an input parameter. 
 
At ion distribution function closed to Gaussian one the kinetic simulation of IBS process in the 
frame of Model Beam algorithm is realized on the basis of the following simplifications: 

- the components of the friction force are a linear functions of the ion momentum 
    , where Kiii PKF −= i are the constants, 

- the components of the diffusion tensor Di,j do not depend on the ion momentum. 
 
The model particle momentum variation after crossing an optic element of length lk are calculated 
in accordance with Langevin equation: 
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where ξj are three Gaussian random numbers with unit dispersion. The coefficients Ci,j have to be 
calculated from diffusion and friction coefficients. Total momentum variation is calculated in 
cycle over optic elements along the ring circumference C. 
 
The diffusion tensor men components in the frame of Bjorken –Mtingwa model are calculated as 
the following integrals: 
 

 ∫
∞

−− Λ−Λ
Λ

=
0

11
2/1

, )(
det ijijji TrdAD δλλ . (5.6) 
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The collision coefficients can be expressed via friction and diffusion components as follows: 
 

 
( ) ( ) jijiji

ji DPPKK
dt

PPd
,++−= ,  (5.7) 

 
where triangular brackets mean averaging over the particles. δi,j is the Kronecker-Kapelli symbol. 
 
Comparing (5.2) and (5.7) one can find expressions for the friction coefficients: 
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To find expressions for Ci,j lets multiply the momentum variation for i and j-th  particles: 
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and average this expression over the particles. Neglecting the term ( )2t∆  and taking into account 
that 
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we obtain 
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The coefficients Ci,k have to be chosen to obtain the same values of collision integrals (5.7), that 
gives the following system of equations: 
 

  ( ) ( ) jijiji
k

kjkijiji DPPKKCCPPKK ,
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1
,, ++−=++− ∑
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.  (5.10) 

 
Due to diagonal symmetry of the diffusion tensor the system consists of the following 6 
independent equations for 9 unknown coefficients: 
 

yxyxyxyx DCCCCCC ,3,3,2,2,1,1, =++  
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zxzxzxzx DCCCCCC ,3,3,2,2,1,1, =++  
 zyzyzyzy DCCCCCC ,3,3,2,2,1,1, =++  (5.11) 
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1, =++  
 
This system has an infinite number of solutions and can be simplified, when the diffusion tensor 
has a zero components. In our case Dx,y = 0 and yx PP  = 0, the solution can be build by the 

following way. Lets assume, that the random number ξ1 correspond to scattering in horizontal 
plane, ξ2 – in vertical and put 01,2, == yx CC . From the first equation of the system (5.10) follows 
that . Lets put . In this case 03,3, =yx CC 03, =xC
 
 xxx DC ,1, = . (5.12) 

 
From the second equation of (5.10) follows  
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Then, for simplicity put 
 
 2/,3,2, yyyy DCC == . (5.14) 
 
From the third equation of (5.10): 
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Substituting (5.13) and (5.15) into the last equation of (5.10) we obtain quadratic equation about 
Cz,3: 
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In absence of vertical dispersion (Dy,z = 0, 0=zy PP ) it gives 
 

 
( )

xx

zxzz
z D

DD
C

,

2
,,

3, 22
−= .  (5.16) 

 
In the general case 
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Fixing the sign plus in the last expression one can write total set of the coefficients: 
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all the other are equal to zero. Here DetD is the determinant of the matrix 
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Di,j are calculated in accordance with (5.6). 
 
Taking into account that the diffusion and friction components are determined for the following 
momentum components: 
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the variations of the ion momentum components inside k-th optic element are given by 
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here n is the number of the particle, εx,y – horizontal and vertical emittances, αk, βk,  - lattice 
parameters, longitudinal emittance is determined as , γ is Lorenz factor, the friction 
coefficients F

/
kD

2
plong σε =

i are calculated in accordance with: 
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To simulate the ion motion in the case of coupling between transverse planes, after each step of 
integration over time the beam is rotated by 900 around axis. For each particle its co-ordinates are 
changed in accordance with the following equation: 
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5.2. Benchmarking of the kinetic model 
 
For Gaussian distribution the described kinetic model has to coincide with Rms dynamics 
simulation using Bjorken-Mtingwa model. Comparison of the kinetic model and Rms dynamics 
simulations are presented in the Fig. 5.1, 5.2. The simulations were performed at typical RHIC 
parameters. Even at model particle number of 2000 the coincidence is satisfactory. 
 

 
Fig. 5.1. Horizontal emittance time dependence. RMS dynamics – read solid line, kinetic model 
(2000 particles) – black dots. Vertical emittance time dependence. RMS dynamics – blue solid 
line, kinetic model (2000 particles) – gray dots. 
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Fig. 5.2. Momentum spread time dependence. RMS dynamics solid line, kinetic model (2000 
particles) – black dots. 
 
5.3. Friction and diffusion in the array of particles 
 
Calculation of the friction force and diffusion tensor components related with the problem of 
coulomb scattering of a test particle of a mass mt and velocity of V

r
 in an array of Nloc field 

particles of a mass mf and velocities ivr  (Fig. 5.3). 

 
Fig. 5.3. Test particle (black circle) in the local cloud of field particles (colored circles).  

 
Solution of this problem is well known from the plasma physics. At the distribution function of 
the field particles in the velocity space of f(v) the friction force is equal to 
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and the diffusion tensor components are 
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Here α, β = x, y, z, the angular brackets mean averaging over the field particles, Zt, Zf are the 
charge numbers of the test and field particle, vVU rrr

−=  is the relative velocity of the test and field 
particle. The minimum and maximum impact parameters are determined as in electron cooling 
simulation. 
 
The distribution function of the field particles in the velocity space is given as a series of δ - 
functions: 
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n – mean local density of the field particles, Nloc – number of the local field particles, Vα is the 
component of the test particle velocity, vj,α - velocity component of j-th field particle, α = x, y, z. 
The minimum impact parameter in the Coulomb logarithm is calculated as 
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The dynamic shielding radius value required for the maximum impact parameter determination is 
calculated using rms velocity spread of the field particles. 
 
The components of the diffusion tensor are 
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(5.32) 
All the values are calculated in the particle rest frame. In the general case all the components of 
the diffusion tensor have nonzero values.  
 
The presented formulae can be used for electron cooling simulation, when the electron bunch is 
presented as an array of particles, as well as for IBS simulation in the frame of Model Beam 
algorithm. 
 
An universal procedure for the friction and diffusion calculation is presently under development. It 
is being benchmarked for the effect ECOOL with real electron distribution represented by an array 
of particles. 
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5.4. Simulation of diffusion processes in model beam 
 
The model particle momentum variation after crossing an optic element providing a diffusion due 
to some physics process (IBS, scattering on gas and so on) are calculated in accordance with 
Langevin equation: 
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j
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where ξj are three Gaussian random numbers with unit dispersion. The coefficients Ci,j have to be 
calculated from diffusion tensor coefficients.  
 
In the general case the diffusion tensor components form a diagonal symmetric matrix: 
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and depending on the process some of them can be equal to zero. 
 
In the presence of the diffusion the mean values of the momentum component variation can be 
expressed via diffusion tensor components in accordance with the definition: 
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where triangular brackets mean averaging over the particles.  
 
To find expressions for Ci,j lets multiply the momentum variation for i and j-th  particles: 
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and average this expression over the particles. Taking into account that 
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we obtain 
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(δi,j is the Kronecker-Kapelli symbol.) The coefficients Ci,k have to be chosen to obtain the same 
values of momentum variation (5.35), that gives the following system of equations: 
 

  ,  (5.37) ji
k

kjki DCC ,

3

1
,, =∑

=

 
or in the matrix form: 
 
 . (5.38) DCC T =
 
For instance at diagonal diffusion tensor in the case when the momentum component variations do 
not correlate with each other, the simplest solution is: 
 

xxx DC ,1, = , yyy DC ,2, = , zzz DC ,3, = , 
 
all the other coefficients are equal to zero. 
 
The diffusion tensor has a diagonal form in the basis formed from its eigenvectors. Lets assume 
that  
 

 , i = 1, 2, 3  (5.39) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

zi

yi

xi

i

Y
Y
Y

Y

,

,

,
r

 
are three linearly independent eigenvectors of the matrix D corresponding to eigenvalues λi. In the 
basis of vectors 321 ,, YYY

rrr
the diffusion tensor has a form  
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and the kick of the ion momentum along the iY

r
 direction can be taken as iλ  . In this case the 

kick of horizontal momentum component, for instance, can be expressed as follows: 
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and similar for y and z components. Correspondingly the coefficients Ci,j can be written as: 
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The norm of the eigenvector is determined as usual 
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For IBS process (or for diffusion in an electron bunch), one can show analytically, that all the 
eigenvalues are positive numbers. In this case the described algorithm can be used for reduction of 
Fokker-Plank equation to Langevin one. The algorithm includes the following steps. 
 
1. From the diffusion tensor components one needs to calculate eigenvalues in accordance with 
characteristic equation 
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2. For each eigenvalue one needs to find corresponding eigenvector. 
3. In accordance with (5.41) to calculate Ci,j
4. To realize the kick in accordance with (5.33). 
 
This algorithm is under development now. 
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